Dane są punkty: A (−4, − 1), B (3, − 5), C (2, 3), D (−6, 2). Wykaż, że trójkąt: a) ABC jest równoramienny, b)… Natychmiastowa odpowiedź na Twoje pytanie.
Rozwiązanie zadania z matematyki: Dane są punkty A=(-1,3) i B=(-4,2). Wyznacz współrzędne punktu C na prostej y=-x+5 tak, aby pole trójkąta ABC było równe 7., Wyliczanie wierzchołków, 9506459
Odpowiedź Zadanie 4. (NP17) Dany jest okrąg o środku S= (2,3) i promieniu r=5. Który z podanych punktów leży na tym okręgu? Odpowiedź Zadanie 5. (NP17) Dane są punkty A= (−4,0) i M= (2,9) oraz prosta k o równaniu y=−2x+10.
Kliknij tutaj, 👆 aby dostać odpowiedź na pytanie ️ Dane są punkty A(-4,1), B(2,5), C(6,1). Narysuj trójkąt ABC w układzie współrzędnych. Oblicz jego obwód.
Ćwiczenie 4 Dane są okręgi: o środku w punkcie styczny do osi oraz o środku w punkcie i promieniu styczny do osi w punkcie . W puste miejsce wpisz odpowiednie liczby całkowite. 1. Promień okręgu ma długość . 2. Środek okręgu może mieć współrzędne lub . 3. Okrąg ma dwa punkty wspólne z okręgiem , gdy . Ã
mos surat ucapan terima kasih untuk kakak osis. Dane są punkty A=(0,1), B=(3,4). Napisz równanie symetralnej odcinka AB.
są punkty: A = (4, 3), B = (4, –3), C = (–4, 3), D = (–4, –3).Spośród punktów A, B, C, D podaj wszystkie pary punktów wyznaczających odcinek, któregoosią symetrii jest oś Ox. Answer
Punkty \(A=(-2,-1)\) i \(B=(2,2)\) są wierzchołkami trójkąta równobocznego \(ABC\). Wysokość tego trójkąta jest równa A.\( 2{,}5 \) B.\( 2\sqrt{3} \) C.\( 5\sqrt{3} \) D.\( 2{,}5\sqrt{3} \) DPole trójkąta \(ABC\) o wierzchołkach \(A=(0,0)\), \(B=(4,2)\), \(C=(2,6)\) jest równe A.\( 5 \) B.\( 10 \) C.\( 15 \) D.\( 20 \) Wyznacz równanie symetralnej odcinka o końcach \(A = (-2,2)\) i \(B = (2,10)\).\(y=-\frac{1}{2}x+6\)Wyznacz równanie prostej zawierającej środkową \(CD\) trójkąta \(ABC\), którego wierzchołkami są punkty \(A=(-2, -1)\), \(B = (6, 1)\), \(C = (7, 10)\).\(y=2x-4\)Dany jest trójkąt równoramienny \(ABC\), w którym \(|AC| = |BC|\) oraz \(A = (2, 1)\) i \(C = (1, 9)\). Podstawa \(AB\) tego trójkąta jest zawarta w prostej \(y=\frac{1}{2}x\). Oblicz współrzędne wierzchołka \(B\).\(B=\left( \frac{34}{5}, \frac{34}{10} \right)\)Wyznacz współrzędne punktu \(A'\), który jest symetryczny do punktu \(A = (3, 2)\) względem prostej \(y=-\frac{1}{3}x-6\).\(B=\left(-2\frac{4}{10};\ -14\frac{2}{10}\right)\)Punkty \(A = (-3, 4)\) i \(C = (1,3)\) są wierzchołkami kwadratu \(ABCD\). Wyznacz równanie prostej zawierającej przekątną \(BD\) tego kwadratu.\(y=4x+\frac{15}{2}\)Punkty \(A=(-1, 2)\) i \(B=(5, -2)\) są dwoma sąsiednimi wierzchołkami rombu \(ABCD\). Obwód tego rombu jest równy A.\( \sqrt{13} \) B.\( 13 \) C.\( 676 \) D.\( 8\sqrt{13} \) DPunkty \(A=(-1,-5), B=(3,-1)\) i \(C=(2,4)\) są kolejnymi wierzchołkami równoległoboku \(ABCD\). Oblicz pole tego równoległoboku.\(P=24\)Punkty \(A=(-2,4)\) i \(C=(-6,2)\) są przeciwległymi wierzchołkami kwadratu \(ABCD\). Zatem promień okręgu opisanego na tym kwadracie jest równy: A.\( 10 \) B.\( 2 \) C.\( \sqrt{5} \) D.\( \sqrt{10} \) COkrąg o środku w punkcie \( S=(-3,4) \) jest styczny do prostej o równaniu \( y=-\frac{4}{3}x+\frac{25}{3} \). Oblicz współrzędne punktu styczności. \((1,7)\)Obrazem punktu \( A=(4,-5) \) w symetrii względem osi \( Ox \) jest punkt: A.\((-4,-5) \) B.\((-4,5) \) C.\((4,5) \) D.\((4,-5) \) CPunkt \( C=(0,2) \) jest wierzchołkiem trapezu \( ABCD \), którego podstawa \( AB \) jest zawarta w prostej o równaniu \( y=2x-4 \). Wskaż równanie prostej zawierającej podstawę \( CD \). A.\(y=\frac{1}{2}x+2 \) B.\(y=-2x+2 \) C.\(y=-\frac{1}{2}x+2 \) D.\(y=2x+2 \) DWierzchołki trapezu \(ABCD\) mają współrzędne: \(A=(-1,-5)\), \(B=(5, 1)\), \(C=(1, 3)\), \(D=(-2, 0)\). Napisz równanie okręgu, który jest styczny do podstawy \(AB\) tego trapezu, a jego środek jest punktem przecięcia się prostych zawierających ramiona \(AD\) oraz \(BC\) trapezu \(ABCD\).\((x+3)^2+(y-5)^2=72\)Proste \(l\) i \(k\) przecinają się w punkcie \(A = (0, 4)\). Prosta \(l\) wyznacza wraz z dodatnimi półosiami układu współrzędnych trójkąt o polu \(8\), zaś prosta \(k\) – trójkąt o polu \(10\). Oblicz pole trójkąta, którego wierzchołkami są: punkt \(A\) oraz punkty przecięcia prostych \(l\) i \(k\) z osią \(Ox\).\(P=2\); punkty przecięcia, to: \((4;0)\) oraz \((5;0)\)Dane są wierzchołki trójkąta \(ABC\): \(A = (2, 2)\) , \(B = (9, 5)\) i \(C = (3, 9)\). Z wierzchołka \(C\) poprowadzono wysokość tego trójkąta, która przecina bok \(AB\) w punkcie \(D\). Wyznacz równanie prostej przechodzącej przez punkt \(D\) i równoległej do boku \(BC\).\(y=-\frac{2}{3}x+\frac{204}{29}\)W układzie współrzędnych dane są punkty \(A=(-43,-12)\), \(B=(50,19)\). Prosta \(AB\) przecina oś \(Ox\) w punkcie \(P\). Oblicz pierwszą współrzędną punktu \(P\).\(x=-7\)Punkty \(A = (3, 2)\) i \(C\) są przeciwległymi wierzchołkami kwadratu \(ABCD\), a punkt \(O = (6,5)\) jest środkiem okręgu opisanego na tym kwadracie. Współrzędne punktu \(C\) są równe A.\( (9,8) \) B.\( (15,12) \) C.\( \left(4\frac{1}{2},3\frac{1}{2}\right) \) D.\( (3,3) \) A
Dane są punkty A=(-13,-16), B=(-4,-2) i C=(4,10) kamczatka: Dane są punkty A=(−13,−16), B=(−4,−2) i C=(4,10) Rozstrzygnij czy punkty A,B,C są współliniowe: obliczam prostą AB: (y+16)(−4+13)=(−2+16)(x+13) 9y+144=14x+182 −9y+14x+38 dobrze ? Bo trzeba to podzielić przez 9 żeby otrzymać równanie kierunkowe i sprawdzić czy punkt C należy do tej prostej, jak podzielę przez 9 to dziwne liczby wyjdą. 7 gru 16:50 Kaja: nie musisz doprowadzać do równania kierunkowego, żeby sprawdzić czy C należy. 7 gru 16:59 kamczatka: to bez sprowadzania mam: −9*10+14*4+38 −90+56+38=4 czyli nie są współliniowe bo nie =0 7 gru 17:02 Kaja: tylko jak zapisujesz to równanie prostej to powinno być: −9y+14x+38=0 no i podstawiasz za x i y po lewej stronie . skoro nie wyszło zero, to nie są współliniowe 7 gru 17:06 5-latek: najpirew taka uwaga . dziwne liczby tez maja prawo wyjsc i nie powinno to wcale cie dziwic . OK? jesli masz prosta w postaci ogolnej to nie musisz jak przeksztalcac do postaci kierunkowej rownanie prostej przechozacej prze z 2 punkty jest takie (x2−x1)(y−y1)=y2−y1)(x−x1) Bierzemy punkty A i B to (−4+13)(y+16)=(−2+16)(x+13) 9(y+16)=14(x+13) 9y+144=14x+182 9y−14x−182+144=0 9y−14x−38=0 masz ja w posytaci ogolnej teraz podstaw wspolrzdne punktu C do tego rownania i zobacz czy wyjdzie 0 Jesli chcesz dporowadzic do postaci kierunkowej to mozesz 7 gru 17:10
malinka1990 Użytkownik Posty: 22 Rejestracja: 23 wrz 2009, o 22:51 Płeć: Kobieta Lokalizacja: olesno Podziękował: 3 razy Dsane są punkty... Dane są punkty A=(1, 1), B=(3, 4). Współczynnik kierunkowy symetralnej odcinka AB jest równe?? bartek118 Użytkownik Posty: 5974 Rejestracja: 28 lut 2010, o 19:45 Płeć: Mężczyzna Lokalizacja: Toruń Podziękował: 15 razy Pomógł: 1251 razy Dsane są punkty... Post autor: bartek118 » 30 mar 2010, o 20:32 Prosta \(\displaystyle{ AB}\) ma współczynnik kierunkowy równy \(\displaystyle{ \frac{3}{2}}\) \(\displaystyle{ y=ax+b}\) \(\displaystyle{ 1=a+b}\) \(\displaystyle{ 4=3a+b}\) \(\displaystyle{ 3=2a}\) \(\displaystyle{ a= \frac{3}{2}}\) Symetralna jest prostopadła, więc jej współczynnik, to \(\displaystyle{ -\frac{2}{3}}\)
dane są punkty a 4 0